Flavonoids from Carthamus tinctorius

LI, Feng(李锋) HE, Zhi-Sheng*(何直昇) YE, Yang*(叶阳)

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Two new flavonoids, (2S)-4',5-dihydroxyl-6,7-di-O- β -D-glucopyranosyl flavanone (1) and 6-hydroxykaempferol 6,7-di-O- β -D-glucopyranoside (2), were isolated from *Carthamus tinctorius*. Their structures were elucidated by spectroscopic means including 2D NMR, ESIMS and CD.

Keywords Carthamus tinctorius, compositae, isolation, structure elucidation, flavonoids

Introduction

Carthamus tinctorius L. (Compositae) is a widely used traditional Chinese medicine having the function of promoting blood circulation by removing blood stasis.¹ Among its constituents, polyacetylenes, 2 serotonin derivatives, ³ steroids, ⁴ lignans, ^{5,6} alkane diols, ^{7,8} flavonoids, ^{9,10} semi-quinone chalcone¹¹ and cycloheptenone oxide derivative¹² have been reported. During the course of our inverstigation, two new flavonoids, (2S)-4', 5-dihydroxyl-6, 7-di-O- β -D-glucopyranosyl flavanone (1) and 6-hydroxykaempferol 6,7-di-0- β -D-glucopyranoside (2), were isolated from its n-BuOH extract accompanied by the two known compounds, 6-hydroxyapigenin 6,7-diglucoside (3)¹³ and 6-hydroxykeampferol 3, 6, 7-triglucoside (4).⁹ Compound 3 was isolated from the plant firstly. This paper describes the isolation and structure elucidation of compounds 1 and 2.

Results and discussion

Compound 1 was a white amorphous powder. The molecular formula was established as $C_{27}H_{32}O_{16}$ by HRESIMS measurement. Its EIMS displayed the fragment

ions at m/z 288 $[M-2Glu]^+$ and 168 [M-2Glu-p]hydroxyphenylethylene] + . The IR spectrum suggested the presence of conjugated carboxyl (v: 1649 cm⁻¹) and hydroxyl groups which were due to sugar moieties (v: 3363, 1074 br cm⁻¹). The ¹H NMR spectrum of 1 (Table 1) showed the presence of the flavanone core structure with a p-hydroxyl-phenyl group at δ 7.32 (H-2' and H-6'), 6.79 (H-3' and H-5') and 9.60 (OH-4'). The downfield chemical shift of OH-5 (δ 11.96) suggested that it should be formed an internal hydrogen bond with the carbonyl carbon C-4 (\delta 197.6). Furthermore, the characteristic signals of flavanone were revealed at δ 5.47 (dd, J = 2.5, 13.0 Hz) for H β -2, at δ 2.69 (dd, J = 2.5, 17.2 Hz) for H β -3 and at δ 3.30 (dd, J = 13.0, 17.2Hz) for Hα-3. Particularly, in the UV spectrum, the absorption band II at 283 nm and band I at 341 nm (sh) were observed, which were strong evidence for flavanones. Two anomeric protons at δ 4.56 (d, J = 7.2Hz, H_{Glc} -1') and δ 4.89 (d, J = 7.3 Hz, H_{Glc} -1") demonstrated the presence of sugar moieties. The above facts suggested that 1 should be a glucoside of flavanone. Comparison with authentic sample by TLC, acid hydrolysis of 1 yielded glucose. In the ${}^{1}H$ NMR spectrum, the Jvalues of the anomeric signals (J = 7.2 Hz, $H_{Glc}-1'$; J = 7.3 Hz, H_{Glc} -1") indicated that the two glucosyl moieties exhibited β-configuration. In the HMBC spectrum, the presence of the cross-peaks between C-6 and HGlc-1' as well as C-7 and $H_{Glc}\text{-}1''$ confirmed that two glucosyl moieties were attached to the C-6 and C-7, respectively. In addition, the significant NOE was observed between H\beta-2 and H\beta-3 indicating that the p-hydroxylphenyl group and H α -3 were syn-form. The absolute configuration at C-2 was determined as S by observing the

^{*} E-mail: zshe@mail.shcnc.ac.cn Received November 15, 2001; revised and accepted February 26, 2002.

CD spectrum, which displayed a positive Cotton effect at 342 nm and a negative Cotton effect at 300 nm. $^{14-16}$ On the basis of the above evidence, the structure of 1 was elucidated to be (2S)-4', 5-dihydroxyl-6, 7-di- $O-\beta-D$ -glucopyranosyl flavanone.

Compound 2 was isolated as light yellow prisms. The molecular formula was determined as $C_{27}H_{30}O_{17}$ by HRES-IMS, and its EIMS showed the fragment ion at m/z 302 [M – 2Glu] $^+$. The IR spectrum indicated the presence of hydroxyl groups which were due to sugar moieties (ν : 3404, 1064 br cm $^{-1}$). The characteristic absorption band I of 3-hydroxyl flavonol at 365 nm was observed in the UV spectrum. Therefore 2 was a glucoside of flavonol.

The IR, 1 H NMR (Table 1) and 13 C NMR (Table 2) spectral data of **2** were similar to those of **4**, especially the 13 C NMR data, which suggested that **2** would be the same aglycone as **4**. Acid hydrolysis of **2** obtained glucose identified by TLC comparison with authentic sample. In the 1 H NMR spectra, the J values of the anomeric protons at δ **4**.87 (J = 7.4 Hz, H_{Glc}-1') and at δ **5**.03 (J = 7.4 Hz, H_{Glc}-1") indicated that the glucosyl moieties exhibited β -configuration. In the HMBC spectrum, the presence of cross peaks between H_{Glc}-1' and C-6 as well as H_{Glc}-1" and C-7 further proved that the two glucosyl groups were attached to the C-6 and C-7, respectively. Considering the above results, the structure of **2** was determined as 6-hydroxykaempferol 6,7-di-O- β -D-glucopyranoside.

Experimental

The melting points (uncorrection) were determined on a Buechi 510 melting point apparatus. The $\left[\alpha\right]_D^{25}$ values were obtained on a DIP-181 digital polarimeter. The UV spectra were taken on a Varian Cary 300 Bio spectrophotometer. The IR spectra were recorded on a Nicolet 750 instrument. The NMR spectra were measured on a Bruker AM-400 spectrometer, with TMS as internal standard in DMSO- d_6 . The ESIMS were taken on a LCQ DE-CA mass spectrometer. The HRESIMS was obtained on an APEX mass spectrometer. The CD were measured on a JASCO J-715 spectropolarimeter.

Table 1 ¹H NMR spectral data for compounds 1—4 *

Position	1	2	3	4
Нβ-2	5.47 (dd, $J = 2.5$, 13.0 Hz)			
Ηα-3	3.30 (dd, $J = 13.0$, 17.2 Hz)*		6.87 (s)	
Нβ-3	2.69 (dd, J = 2.5, 17.2 Hz)			
8	6.35 (s)	7.01 (s)	7.06 (s)	6.99 (s)
H-2'	7.32 (d, J = 8.5 Hz)	8.06 (d, J = 8.9 Hz)	7.96 (dd, J = 6.9, 2.0 Hz)	8.05 (d, J = 9.0 Hz)
H-3'	6.79 (d, $J = 8.5 \text{ Hz}$)	6.94 (d, $J = 8.9 \text{ Hz}$)	6.94 (dd, J = 6.9, 2.0 Hz)	6.89 (d, $J = 9.0 \text{ Hz}$)
H-5'	6.79 (d, $J = 8.5 \text{ Hz}$)	6.94 (d, $J = 8.9 \text{ Hz}$)	6.94 (dd, J = 6.9, 2.0 Hz)	6.89 (d, $J = 9.0 \text{ Hz}$)
H-6′	7.32 (d, $J = 8.5 \text{ Hz}$)	8.06 (d, J = 8.9 Hz)	7.96 (dd, J = 6.9, 2.0 Hz)	8.05 (d, $J = 9.0 \text{ Hz}$)
OH-3		9.52 (s)		
OH-5	11.96 (s)	12.51 (s)	13.05 (s)	12.65 (s)
OH-4'	9.60 (s)	10.14 (s)	10.04 (s)	10.26 (s)
H_{Glc} -1				5.47 (d, $J = 7.3 \text{ Hz}$)
H_{Glc} -1'	4.56 (d, J = 7.2 Hz)	4.87 (d, J = 7.4 Hz)	4.88 (d, $J = 7.4 \text{ Hz}$)	4.87 (d, $J = 7.3 \text{ Hz}$)
H_{Glc} -1"	4.89 (d, $J = 7.3 \text{ Hz}$)	5.03 (d, $J = 7.4 \text{ Hz}$)	5.04 (d, J = 7.4 Hz)	5.04 (d, J = 7.7 Hz)

^{*} H signal at δ 3.30 was overlapped by the solvent DMSO- d_6 .

Table 2 ¹³C NMR spectral data for compounds 1—4

Position	1	2	3	4
C-2	78.8 (d)	147.5 (s)	164.3 (s)	157.1 (s)
C-3	42.3 (t)	135.7 (s)	102.8 (d)	133.2 (s)
C-4	197.6 (s)	176.1 (s)	182.3 (s)	177.8 (s)
C-5	154.7 (s)	151.5 (s)	152.6 (s)	152.3 (s)
C-6	126.9 (s)	128.4 (s)	129.2 (s)	128.9 (s)
C-7	158.1 (s)	155.9 (s)	156.1 (s)	156.0 (s)
C-8	94.8 (d)	94.2 (d)	94.7 (d)	94.4 (d)
C-9	158.5 (s)	151.3 (s)	152.3 (s)	151.6 (s)
C-10	103.4 (s)	105.6 (s)	105.8 (s)	106.2(s)
C-1'	128.6 (s)	121.4 (s)	121.0 (s)	120.9 (s)
C-2'	128.5 (d)	129.5 (d)	128.5 (d)	131.0 (d)
C-3'	115.2 (d)	115.4 (d)	115.9 (d)	115.2 (d)
C-4'	157.8 (s)	159.3 (s)	161.3 (s)	160.1 (s)
C-5'	115.2 (d)	115.4 (d)	115.9 (d)	115.2 (d)
C-6'	128.5 (d)	129.5 (d)	128.6 (d)	131.0 (d)
3-Glucosyl moiety				
G-1				100.8 (d)
G-2				74.3 (d)
G-3				76.4 (d)
G-4				69.9 (d)
G-5				77.5 (d)
G-6				60.9 (t)
6-Glucosyl moiety				
G-1'	103.8 (d)	103.4 (d)	103.3 (d)	103.4 (d)
G-2'	73.3 (d)	73.3 (d)	73.4 (d)	73.4 (d)
G-3'	76.3 (d)	75.8 (d)	76.3 (d)	76.4 (d)
G-4'	69.6 (d)	69.6 (d)	69.7 (d)	69.8 (d)
G-5'	77.2 (d)	77.1 (d)	77.3 (d)	77.2 (d)
G-6'	60.6 (t)	60.6 (t)	60.8 (t)	60.8 (t)
7-Glucosyl moiety				
G-1"	100.7 (d)	100.9 (d)	100.9 (d)	100.6 (d)
G-2"	74.1 (d)	74.0 (d)	74.1 (d)	74.2 (d)
G-3"	76.3 (d)	76.2 (d)	75.9 (d)	75.9 (d
G-4"	69.8 (d)	69.7 (d)	69.6 (d)	69.7 (d
G-5"	77.2 (d)	77.2 (d)	77.1 (d)	77.2 (d
G-6"	60.9 (t)	60.7 (t)	60.7 (t)	60.7 (t

Plant material

The flower petals of *Carthamus tinctorius* were collected in Sichuan province, China, and authenticated by Prof. Lan Xu. A voucher specimen (No. 77) has been deposited at Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

Extraction and isolation

The air-dried flower petals (6 kg) were extracted with water, and extracted with EtOAc, followed by n-BuOH. The n-BuOH fraction (150 g) was chromatographied on a silica gel column using gradient elution with CHCl₃-MeOH-H₂O (V:V:V:V, 15:1:0, 8:1:0, 4:1:

0.1, 2:1:0.1, MeOH). Five fractions were collected. The MeOH fraction was subjected to a polyamide column with H_2O , H_2O -MeOH (V:V, 1:1) and MeOH successively. The fraction (H_2O -MeOH) was chromatographied on a silica gel column repeatedly, and 4 (25 mg) was obtained. The fraction CHCl₃-MeOH- H_2O (V:V:V, 2:1:0.1) was chromatographied on a polyamide eluted with H_2O -MeOH (V:V, 3:1), and then repeatedly on a silica gel column using CHCl₃-MeOH- H_2O (V:V:V, 4:1:0.1) as solvent. The purification by Sephdex LH20 chromatography with methanol was subjected, then compounds 1 (80 mg), 2 (30 mg), 3 (40 mg) and 4 (25 mg) were obtained, respectively.

1 White amorphous powder, m.p. 207 °C (dec.), $[\alpha]_D^{25} - 51.2$ (c 0.108, MeOH); UV-vis (MeOH) λ_{max} : 283, 341 nm; ¹H NMR: see Table 1; ¹³C NMR: see Table 2; IR (KBr) ν : 3363, 2895, 1649, 1448, 1283, 1074 (br), 835 cm⁻¹; EIMS (70 eV) m/z (%): 168 ([M-2Glu-p-hydroxyphenylethylene] +, 100); 288 ([M-2Glu] +, 48); ESIMS (negative ion) m/z (%): 611 ([M-H] -, 100), 449 ([M-Glu-H] -, 14); ESIMS (positive ion) m/z (%): 613 ([M+H] +, 30), 289 ([M-2Glu+H] +, 25), 451 ([M-Glu+H] +, 48), 630 ($[M+NH_4$ +], 100), 1242 ($[2M+NH_4$ +], 70); CD: $[\theta]_{342} + 3450$, $[\theta]_{300} - 7000$, $[\theta]_{280} + 800$, $[\theta]_{260} - 2500$, $[\theta]_{250} + 2000$ (c 1.60 × 10 - 3); HRESIMS (positive): calcd for $C_{27}H_{33}O_{16}$ 613.1762, found 613.1763.

2 Light yellow prisms, m. p. 187 °C (dec.), $[\alpha]_D^{25} - 66.2$ (c 0.0803, MeOH); UV-vis (MeOH) λ_{max} : 365, 269, 257 nm; ¹H NMR; see Table 1; ¹³C NMR; see Table 2; IR (KBr) ν : 3404, 2933, 1649, 1610, 1552, 1512, 1481, 1356, 1290, 1182, 1064 br, 839 cm⁻¹; EIMS (70 eV) m/z (%): 302 ([M - 2Glu]⁺, 70); ESIMS (negative ion) m/z (%): 625 ([M - H]⁻, 100), 463 ([M - Glu - H]⁻, 18), 301 ([M - 2Glu - H]⁻, 5); ESIMS (positive ion) m/z (%): 627 ([M + H]⁺, 100), 649 ([M + Na]⁺,

25), 465 ([M - Glu + H] $^+$, 30); HRESIMS (positive); calcd for $C_{27}H_{31}O_{17}$ 627.1555, found 627.1554.

References

- Jiangsu New Medica Institute, Dictionary of Chinese Medicine, Shanghai Science and Technology Press, Shanghai, 1985, pp. 992—994.
- Binder, R. G.; Lundin, R. E.; Kint, S.; Klisiewicz, J. M.; Waiss, A. C. Phytochemistry 1978, 17, 315.
- 3 Zhang, H. L.; Nagatsu, A.; Watanabe, T.; Sakakibara, J.; Okuyama, H. Chem. Pharm. Bull. 1997, 45, 1910.
- 4 Nagatsu, A.; Zhang, H. L.; Watanabe, T.; Taniguchi, N.; Hatano, K.; Mizukami, H.; Sakakibara, J. Chem. Pharm. Bull. 1998, 46, 1044.
- 5 Palter, R.; Lundin, R. E.; Haddon, W. F. Phytochemistry 1972, 11, 2871.
- 6 Nishibe, S.; Sakushima, A.; Hisada, S.; Inagaki, I. Phytochemistry 1972, 11, 2629.
- 7 Akihisa, T.; Nozaki, A.; Inoue, Y.; Yasukawa, K.; Kasahara, Y.; Motohashi, S.; Kumaki, K.; Tokutake, N.; Takido, M.; Tamura, T. Phytochemistry 1997, 45, 725.
- 8 Akihisa, T.; Oinuma, H.; Tamura, T.; Kasahara, Y.; Kumaki, K.; Yasukawa, K.; Takido, M. Phytochemistry 1994, 36, 105.
- 9 Masao, H.; Huang, X. L.; Che, Q. M.; Yukio, K.; Yasuhiro, T.; Tohru, K.; Tsuneo, N. Phytochemistry 1992, 31, 4001.
- 10 Kim, M. N.; Le Scao-Bogaert, F.; Paris, M. Panta Med. 1992, 58, 285.
- 11 Yin, H. B.; He, Z. S. Tetrahedron Lett. 2000, 41, 1955.
- 12 Yin, H. B.; He, Z. S.; Ye, Y. J. Nat. Prod. 2000, 63, 1164.
- Harborne, J. B.; Mabry, T. J. The Flavonoids: Advances in Research, Chapman and Hall Ltd, London, New York, 1982.
- 14 Xu, R. S. *Natural Product Chemistry*, Chinese Academic Press, China, **1992**, p. 112, 592 (in Chinese).
- 15 Snatzke, G.; Znatzke, F. Tetrahedron 1973, 29, 909.
- 16 Gaffield, W. Tetrahedron 1970, 26, 4093.